当前位置:三人行学习网文章频道免费教案数学教案高二数学教案函数的单调性

函数的单调性

浏览次数: 110次| 发布日期:06-12 12:29:04 | 高二数学教案
标签:人教版高二数学教案,高二上学期数学教案,http://www.350xue.com 函数的单调性,

     (2)要说明三个代数式的符号:k,x1·x2,x2-x1

    

     要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.

     对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)

     四、课堂小结

     师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?

     (请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)

     生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明函数的单调性时,应该注意证明的四个步骤.

     五、作业

     1.课本P53练习第1,2,3,4题.

    

     数.

    

    

     =a(x1-x2)(x1+x2)+b(x1-x2

     =(x1-x2)[a(x1+x2)+b].(*)

    

    

     +b>0.由此可知(*)式小于0,即f(x1)<f(x2).

    

函数的单调性由www.350xue.com收集及整理,转载请说明出处www.350xue.com
www.350xue.com


     课堂教学设计说明

     函数的单调性是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,函数的单调性早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理.

     另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用.

     还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫.




函数的单调性由www.350xue.com收集及整理,转载请说明出处www.350xue.com

上一页  [1] [2] [3] 


函数的单调性
[审核:三人行学习网]

tag: 高二数学教案,人教版高二数学教案,高二上学期数学教案,免费教案 - 数学教案 - 高二数学教案